NEO GEISHA-X
 

 advertise with indeep media

Researchers Turn Back The Aging Clock on Adult Stem Cells

Posted: September 29th, 2011 | Author: | Filed under: Cankler, Favorite New Thought, Michael Courtenay, Science, Science News | Tags: , , , , , , , , , , , | Comments Off

Researchers Turn Back The Aging Clock on Adult Stem Cells

Ageing, it’s one of those things we’ve simply grown accustomed too: we’re born, we live, we get old and we cease to live. Ageing is a complex process that involves every cell and organ in the body and that leads to the deterioration of many body functions over the lifespan of an individual.

With age, for example, the skin loses its elasticity and injuries heal more slowly than in childhood. The same holds true for bones, which turn brittle with age and take much longer to heal when fractured ::::

Researchers Turn Back The Aging Clock on Adult Stem Cells

Although the vulnerability to infectious disease and cancer is caused by a decline of the immune system, the latter is in turn a product of interactions among haematopoietic stem cells and the microenvironments in the bone marrow and the thymus, as well as in the mucous lining of the bronchus and gut systems.

Hence, all ageing phenomena—tissue deterioration, cancer and propensity to infections—can be interpreted as signs of ageing at the level of somatic stem cells. As the regenerative prowess of a living organism is determined by the ability and potential of its stem cells to replace damaged tissue or worn-out cells, a living organism is therefore as old as its stem cells.

Mammals, and especially humans, have paid a high price for climbing up the evolutionary ladder: they have lost much of the regenerative power found in lower animals. Whereas humans have only limited potential to rejuvenate their ailing tissues, other organisms show amazing regenerative abilities.

On decapitation, planaria will regenerate a new head within five days. Hydra, a small tubular freshwater animal that spends its life clinging to rocks, is able to produce two new organisms within 7–10 days when its body is halved. After losing a leg to a predator, salamanders recover with a new limb within a matter of days.

Animals with staggering regenerative potential either have an abundance of stem cells or can de-differentiate specialized tissue cells into stem cells. It has been estimated that about 20% of a flatworm consists of stem cells, and hydra is a “kind of permanent embryo”. Salamanders use a completely different mechanism. When they are in urgent need of a new limb, they convert adult differentiated cells back to an embryonic undifferentiated state. These cells then migrate to the site of injury where they regenerate the missing part.

So it seems stem cells are the key to aging, or not aging . In a new paper published in the journal Cell Cycle, researchers from Georgia Tech and The Buck Institute have shown that they can reverse the aging process for human adult stem cells. The findings could lead to medical treatments that may repair a host of ailments that occur because of that strange cycle we seem to be stuck in, aging.

Stem cells are biological cells found in all multicellular organisms, they can divide through mitosis and differentiate into diverse specialized cell types, they self-renew to produce more stem cells.

In mammals, there are two broad types of stem cell: embryonic stem cells and adult stem cells. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. Stem Cells, apparently, are the reason we age, they may be the very definition of Aging . . .

We demonstrated that we were able to reverse the process of aging for human adult stem cells by intervening with the activity of non-protein coding RNAs originated from genomic regions once dismissed as non-functional  ‘genomic junk” said Victoria Lunyak, associate professor at the Buck Institute for Research on Aging.

chromosomes - the white tips are telemere

As Regular adult cells become aged, the caps on the end of their chromosomes  - telomeres – shorten. Adult Stem Cells  - somatic - on the other hand, are known to maintain their telomeres. Much of the damage in aging is widely thought to be a result of losing telomeres. So there must be different mechanisms at play that are key to explaining how aging occurs in these adult Stem Cells.

Adult stem cell can grow and replace any number of body cells in the tissue or organ they belong to. However, just as the Regular Cells in the liver – any other organ –  get damaged over time, adult Stem Cells undergo age-related damage. When tem Cells are damaged, the body can’t replace degraded tissue as well as it once could, leading to a host of diseases and conditions.

A telomere is a region of repetitive DNA sequences at the end of a chromosome, which protects the end of the chromosome from deterioration or from fusion with neighboring chromosomes. 

Molecular structure of telomere [G-quadruplex]

Naturally, the regenerative power of tissues and organs declines as we age. The modern stem cell hypothesis on aging suggests that living organisms are as old as are its tissue specific or adult stem cells. Therefore, an understanding of the molecules and processes that enable human adult stem cells to initiate self-renewal and to divide, proliferate and then differentiate in order to rejuvenate damaged tissue might be the key to regenerative medicine and an eventual cure for many age-related diseases.

A research group led by the Buck Institute for Research on Aging in collaboration with the Georgia Institute of Technology, conducted the study that pinpoints what is going wrong with the biological clock underlying the limited division of human adult stem cells as they age.

The team began by hypothesizing that DNA damage in the genome of adult stem cells would look very different from age-related damage occurring in regular body cells. They thought so because body cells are known to experience a shortening of the caps found at the ends of chromosomes, known as telomeres. But

Researchers used adult stem cells from humans and combined experimental techniques with computational approaches to study the changes in the genome associated with aging.  They compared freshly isolated human adult stem cells from young individuals, which can self-renew, to cells from the same individuals that were subjected to prolonged passaging in culture. This accelerated model of adult stem cell aging exhausts the regenerative capacity of the adult stem cells. Researchers looked at the changes in genomic sites that accumulate DNA damage in both groups.

We found the majority of DNA damage and associated chromatin changes that occurred with adult stem cell aging were due to parts of the genome known as retrotransposons” said King Jordan, associate professor in the School of Biology at Georgia Tech. “Retroransposons were previously thought to be non-functional and were even labeled as ‘junk DNA’, but accumulating evidence indicates these elements play an important role in genome regulation

In similar research from Seoul National University, Kang Kyung-sun, in a series of studies recently published by Cellular and Molecular Life Science, researchers reported some new findings related to the premature aging of adult stem cells, which they say improves the explanation on what makes humans grow old.  It has been presumed that the decreasing regenerative capacity of adult stem cells, which is linked to their aging, is a result of inborn genetic variations. But Kang suggests that the process isn’t dictated by heritable events, such as DNA damage, but determined by an “epigenetic” regulation of gene expression.

Epigenetic mechanisms refer to the changes in cell control that involve genes being switched on or off, which determines what parts of a person’s DNA is expressed and how. This hidden influence, which adds a whole new layer to genes beyond inherited DNA, is believed to be connected to how cells of particular body parts and organs acquire their specific functions. According to Kang, the aging of adult stem cells has much to do with the roles played out by particular proteins. Kang’s team also identified three micro-RNAs which accelerate the process of the adult cell’s aging. Micro-RNAs are tiny pieces of genetic material that target and suppress the activities of other genes.

There weren’t many studies on finding micro-RNAs related to the aging of cells and learn how they affect stem cells, but this area could be important in developing a way to have adult stem cells retain their normal ability for a longer time” Kang said.

Most adult stem cells are lineage-restricted - multipotent - and are generally referred to by their tissue origin - mesenchymal stem cell - adipose-derived stem cell, endothelial stem celldental pulp stem cell, etc. The use of adult stem cells in research and therapy is not as controversial as the use of embryonic stem cells. Tthe production of adult stem cells does not require the destruction of an embryo. Additionally, in instances where adult stem cells are obtained from the intended recipient – an autograft - the risk of rejection is essentially non-existent. Consequently, more US government funding is being provided for adult stem cell research.  Adult stem cell treatments have been successfully used for many years to treat leukemia and related bone/blood cancers through bone marrow transplants. Adult stem cells are also used in veterinary medicine to treat tendon and ligament injuries in horses. An extremely rich source for adult mesenchymal stem cells is the developing tooth bud of the mandibular third molar. The stem cells eventually form enamel (ectoderm), dentin, periodontal ligament, blood vessels, dental pulp, nervous tissues, and a minimum of 29 different end organs. Because of extreme ease in collection at 8–10 years of age before calcification and minimal to no morbidity, these will probably constitute a major source of cells for personal banking, research and current or future therapies.

In the Buck/Georgia research, young adult stem cells were able to suppress transcriptional activity of genomic elements and deal with the damage to the DNA, older adult stem cells were not able to scavenge this transcription. New discovery suggests that this event is deleterious for the regenerative ability of stem cells and triggers a process known as cellular senescence.

Buck/Georgia Abstract: Cellular aging is linked to deficiencies in efficient repair of DNA double strand breaks and authentic genome maintenance at the chromatin level. Aging poses a significant threat to adult stem cell function by triggering persistent DNA damage and ultimately cellular senescence. Senescence is often considered to be an irreversible process. Moreover, critical genomic regions engaged in persistent DNA damage accumulation are unknown. Here we report that 65% of naturally occurring repairable DNA damage in self-renewing adult stem cells occurs within transposable elements. Upregulation of Alu retrotransposon transcription upon ex vivo aging causes nuclear cytotoxicity associated with the formation of persistent DNA damage foci and loss of efficient DNA repair in pericentric chromatin. This occurs due to a failure to recruit of condensin I and cohesin complexes. Our results demonstrate that the cytotoxicity of induced Alu repeats is functionally relevant for the human adult stem cell aging. Stable suppression of Alu transcription can reverse the senescent phenotype, reinstating the cells’ self-renewing properties and increasing their plasticity by altering so-called “master” pluripotency regulators.

By suppressing the accumulation of toxic transcripts from retrotransposons, we were able to reverse the process of human adult stem cell aging in culture” said Lunyak. “By rewinding the cellular clock in this way, we were not only able to rejuvenate ’aged’ human stem cells, but to our surprise we were able to reset them to an earlier developmental stage, by up-regulating the “pluripotency factors” – the proteins that are critically involved in the self-renewal of undifferentiated embryonic stem cells

The study was conducted by a team with members from the Buck Institute for Research on Aging, the Georgia Institute of Technology, the University of California, San Diego, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, International Computer Science Institute, Applied Biosystems and Tel-Aviv University.

source: buck institue
source: georgia tech
source: kang kyung-sun
source: nature
source: Davenport
source: clark, 1999
introduction via :
anthony d ho
wolfgang wagner
ulrich mahlknecht
department of medicine
university of heidelberg
germany

Wiki >

Stem cells are biological cells found in all multicellular organisms, that can divide (through mitosis) and differentiate into diverse specialized cell types and can self-renew to produce more stem cells. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adultorganisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cells, but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues.

Stem cells can now be artificially grown and transformed into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves through cell culture. Highly plastic adult stem cells are routinely used in medical therapies. Stem cells can be taken from a variety of sources, including umbilical cord blood and bone marrow. Embryonic cell lines and autologous embryonic stem cells generated through therapeutic cloning have also been proposed as promising candidates for future therapies.[1] Research into stem cells grew out of findings by Ernest A. McCulloch and James E. Till at the University of Toronto in the 1960s.

There are three sources of autologous adult stem cells: 1) Bone marrow, which requires extraction by harvesting, that is, drilling into bone (typically the femur or illiac crest), 2) Adipose tissue (lipid cells), which requires extraction by liposuction, and 3) Blood, which requires extraction through pheresis, wherein blood is drawn from the donor, (similar to a blood donation) passed through a machine that extracts the stem cells and returns other portions of the blood to the donor.

Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one’s own body, just as one may bank his or her own blood for elective surgical procedures.


Properties

  • Self-renewal: the ability to go through numerous cycles of cell division while maintaining the undifferentiated state.
  • Potency: the capacity to differentiate into specialized cell types. In the strictest sense, this requires stem cells to be either totipotent or pluripotent—to be able to give rise to any mature cell type, although multipotent or unipotent progenitor cells are sometimes referred to as stem cells.Apart from this it is being said that stem cells function is regulated in a feed back mechanism.

Self-renewal

Two mechanisms to ensure that the stem cell population is maintained exist:

  1. Obligatory asymmetric replication: a stem cell divides into one father cell that is identical to the original stem cell, and another daughter cell that is differentiated
  2. Stochastic differentiation: when one stem cell develops into two differentiated daughter cells, another stem cell undergoes mitosis and produces two stem cells identical to the original.

Potency definitions

Pluripotent, embryonic stem cells originate as inner mass cells within a blastocyst. The stem cells can become any tissue in the body, excluding a placenta. Only the morula’s cells are totipotent, able to become all tissues and a placenta.

Human embryonic stem cells
A: Cell colonies that are not yet differentiated.
B: Nerve cell

Main article: Cell potency

Potency specifies the differentiation potential (the potential to differentiate into different cell types) of the stem cell.

  • Totipotent (a.k.a omnipotent) stem cells can differentiate into embryonic and extraembryonic cell types. Such cells can construct a complete, viable organism. These cells are produced from the fusion of an egg and sperm cell. Cells produced by the first few divisions of the fertilized egg are also totipotent.
  • Pluripotent stem cells are the descendants of totipotent cells and can differentiate into nearly all cells,i.e. cells derived from any of the three germ layers.
  • Multipotent stem cells can differentiate into a number of cells, but only those of a closely related family of cells.
  • Oligopotent stem cells can differentiate into only a few cells, such as lymphoid or myeloid stem cells.
  • Unipotent cells can produce only one cell type, their own, but have the property of self-renewal, which distinguishes them from non-stem cells (e.g., muscle stem cells).

Identification

The practical definition of a stem cell is the functional definition—a cell that has the potential to regenerate tissue over a lifetime. For example, the defining test for a bone marrow or hematopoietic stem cell (HSC) is the ability to transplant one cell and save an individual without HSCs. In this case, a stem cell must be able to produce new blood cells and immune cells over a long term, demonstrating potency. It should also be possible to isolate stem cells from the transplanted individual, which can themselves be transplanted into another individual without HSCs, demonstrating that the stem cell was able to self-renew.

Properties of stem cells can be illustrated in vitro, using methods such as clonogenic assays, in which single cells are assessed for their ability to differentiate and self-renew. Stem cells can also be isolated by their possession of a distinctive set of cell surface markers. However, in vitro culture conditions can alter the behavior of cells, making it unclear whether the cells will behave in a similar manner in vivo. There is considerable debate as to whether some proposed adult cell populations are truly stem cells.

Embryonic

Wikipedia: Embryonic stem cell

Embryonic stem cell lines (ES cell lines) are cultures of cells derived from the epiblast tissue of the inner cell mass (ICM) of a blastocyst or earlier morula stage embryos. A blastocyst is an early stage embryo—approximately four to five days old in humans and consisting of 50–150 cells. ES cells are pluripotent and give rise during development to all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extra-embryonic membranes or the placenta. The endoderm is composed of the entire gut tube and the lungs, the ectoderm gives rise to the nervous system and skin, and the mesoderm gives rise to muscle, bone, blood—in essence, everything else that connects the endoderm to the ectoderm.

Nearly all research to date has made use of mouse embryonic stem cells (mES) or human embryonic stem cells (hES). Both have the essential stem cell characteristics, yet they require very different environments in order to maintain an undifferentiated state. Mouse ES cells are grown on a layer of gelatin and require the presence of leukemia inhibitory factor (LIF). Human ES cells are grown on a feeder layer of mouse embryonic fibroblasts (MEFs) and require the presence of basic fibroblast growth factor (bFGF or FGF-2). Without optimal culture conditions or genetic manipulation, embryonic stem cells will rapidly differentiate.

A human embryonic stem cell is also defined by the presence of several transcription factors and cell surface proteins. The transcription factors Oct-4, Nanog, and Sox2 form the core regulatory network that ensures the suppression of genes that lead to differentiation and the maintenance of pluripotency. The cell surface antigens most commonly used to identify hES cells are the glycolipids SSEA3 and SSEA4 and the keratan sulfate antigens Tra-1-60 and Tra-1-81. The molecular definition of a stem cell includes many more proteins and continues to be a topic of research.

There are currently no approved treatments using embryonic stem cells. The first human trial was approved by the US Food & Drug Administration in January 2009. However, the human trial had not yet been initiated until October 13, 2010 in Atlanta for spinal injury victims. ES cells, being pluripotent cells, require specific signals for correct differentiation—if injected directly into another body, ES cells will differentiate into many different types of cells, causing a teratoma. Differentiating ES cells into usable cells while avoiding transplant rejection are just a few of the hurdles that embryonic stem cell researchers still face. Many nations currently have moratoria on either ES cell research or the production of new ES cell lines. Because of their combined abilities of unlimited expansion and pluripotency, embryonic stem cells remain a theoretically potential source for regenerative medicine and tissue replacement after injury or disease.

Fetal

The primitive stem cells located in the organs of fetuses are referred to as fetal stem cells.

Adult

Wikipedia: Adult stem cell

Stem cell division and differentiation. A: stem cell; B: progenitor cell; C: differentiated cell; 1: symmetric stem cell division; 2: asymmetric stem cell division; 3: progenitor division; 4: terminal differentiation

Also known as somatic (from Greek Σωματικóς, “of the body”) stem cells and germline (giving rise to gametes) stem cells, they can be found in children, as well as adults.

Pluripotent adult stem cells are rare and generally small in number but can be found in a number of tissues including umbilical cord blood. A great deal of adult stem cell research to date has had the aim of characterizing the capacity of the cells to divide or self-renew indefinitely and their differentiation potential. In mice, pluripotent stem cells are directly generated from adult fibroblast cultures. Unfortunately, many mice do not live long with stem cell organs.

Most adult stem cells are lineage-restricted (multipotent) and are generally referred to by their tissue origin (mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, dental pulp stem cell, etc.).

Adult stem cell treatments have been successfully used for many years to treat leukemia and related bone/blood cancers through bone marrow transplants. Adult stem cells are also used in veterinary medicine to treat tendon and ligament injuries in horses.

The use of adult stem cells in research and therapy is not as controversial as the use of embryonic stem cells, because the production of adult stem cells does not require the destruction of an embryo. Additionally, in instances where adult stem cells are obtained from the intended recipient (an autograft), the risk of rejection is essentially non-existent. Consequently, more US government funding is being provided for adult stem cell research.

An extremely rich source for adult mesenchymal stem cells is the developing tooth bud of the mandibular third molar. The stem cells eventually form enamel (ectoderm), dentin, periodontal ligament, blood vessels, dental pulp, nervous tissues, and a minimum of 29 different end organs. Because of extreme ease in collection at 8–10 years of age before calcification and minimal to no morbidity, these will probably constitute a major source of cells for personal banking, research and current or future therapies. These stem cells have been shown capable of producing hepatocytes.

Amniotic

Multipotent stem cells are also found in amniotic fluid. These stem cells are very active, expand extensively without feeders and are not tumorigenic. Amniotic stem cells are multipotent and can differentiate in cells of adipogenic, osteogenic, myogenic, endothelial, hepatic and also neuronal lines. All over the world, universities and research institutes are studying amniotic fluid to discover all the qualities of amniotic stem cells, and scientists such as Anthony Atala and Giuseppe Simoni  have discovered important results.

Use of stem cells from amniotic fluid overcomes the ethical objections to using human embryos as a source of cells. Roman Catholic teaching forbids the use of embryos in experimentation; accordingly, the Vatican newspaper “Osservatore Romano” called amniotic stem cell “the future of medicine”.

It is possible to collect amniotic stem cells for donors or for autologuous use: the first US amniotic stem cells bank opened in 2009 in Medford, MA, by Biocell Center Corporation  and collaborates with various hospitals and universities all over the world.

Induced pluripotent

Wikipedia: Induced pluripotent stem cell

These are not adult stem cells, but rather reprogrammed cells (e.g. epithelial cells) given pluripotent capabilities. Using genetic reprogramming with protein transcription factors, pluripotent stem cells equivalent to embryonic stem cells have been derived from human adult skin tissue. Shinya Yamanaka and his colleagues at Kyoto University used the transcription factors Oct3/4, Sox2, c-Myc, and Klf4 in their experiments on cells from human faces. Junying Yu, James Thomson, and their colleagues at the University of Wisconsin–Madison used a different set of factors, Oct4, Sox2, Nanog and Lin28, and carried out their experiments using cells from human foreskin.

As a result of the success of these experiments, Ian Wilmut, who helped create the first cloned animal Dolly the Sheep, has announced that he will abandon nuclear transfer as an avenue of research.

Frozen blood samples can be used as a source of induced pluripotent stem cells, opening a new avenue for obtaining the valued cells.

Lineage

Wikipedia: Stem cell line

To ensure self-renewal, stem cells undergo two types of cell division (see Stem cell division and differentiation diagram). Symmetric division gives rise to two identical daughter cells both endowed with stem cell properties. Asymmetric division, on the other hand, produces only one stem cell and a progenitor cell with limited self-renewal potential. Progenitors can go through several rounds of cell division before terminally differentiating into a mature cell. It is possible that the molecular distinction between symmetric and asymmetric divisions lies in differential segregation of cell membrane proteins (such as receptors) between the daughter cells.

An alternative theory is that stem cells remain undifferentiated due to environmental cues in their particular niche. Stem cells differentiate when they leave that niche or no longer receive those signals. Studies in Drosophila germarium have identified the signals dpp and adherens junctions that prevent germarium stem cells from differentiating.

The signals that lead to reprogramming of cells to an embryonic-like state are also being investigated. These signal pathways include several transcription factors including the oncogene c-Myc. Initial studies indicate that transformation of mice cells with a combination of these anti-differentiation signals can reverse differentiation and may allow adult cells to become pluripotent. However, the need to transform these cells with an oncogene may prevent the use of this approach in therapy.

Challenging the terminal nature of cellular differentiation and the integrity of lineage commitment, it was recently determined that the somatic expression of combined transcription factors can directly induce other defined somatic cell fates; researchers identified three neural-lineage-specific transcription factors that could directly convert mouse fibroblasts (skin cells) into fully functional neurons. This “induced neurons” (iN) cell research inspires the researchers to induce other cell types implies that all cells aretotipotent: with the proper tools, all cells may form all kinds of tissue.

Treatments

Wikipedia: Stem cell treatments

Diseases and conditions where stem cell treatment is promising or emerging. Bone marrow transplantation is, as of 2009, the only established use of stem cells.

Medical researchers believe that stem cell therapy has the potential to dramatically change the treatment of human disease. A number of adult stem cell therapies already exist, particularly bone marrow transplants that are used to treat leukemia. In the future, medical researchers anticipate being able to use technologies derived from stem cell research to treat a wider variety of diseases including cancer, Parkinson’s disease, spinal cord injuries, Amyotrophic lateral sclerosis, multiple sclerosis, and muscle damage, amongst a number of other impairments and conditions. However, there still exists a great deal of social and scientific uncertainty surrounding stem cell research, which could possibly be overcome through public debate and future research, and further education of the public.

One concern of treatment is the risk that transplanted stem cells could form tumors and become cancerous if cell division continues uncontrollably.

Stem cells are widely studied, for their potential therapeutic use and for their inherent interest.

Supporters of embryonic stem cell research argue that such research should be pursued because the resultant treatments could have significant medical potential. It has been proposed that surplus embryos created for in vitro fertilization could be donated with consent and used for the research.

The recent development of iPS cells has been called a bypass of the legal controversy. Laws limiting the destruction of human embryos have been credited for being the reason for development of iPS cells, but it is still not completely clear whether hiPS cells are equivalent to hES cells. Recent work demonstrates hotspots of aberrant epigenomic reprogramming in hiPS cells (Lister, R., et al., 2011).

Research patents

The patents covering a lot of work on human embryonic stem cells are owned by the Wisconsin Alumni Research Foundation (WARF). WARF does not charge academics to study human stem cells but does charge commercial users. WARF sold Geron Corp. exclusive rights to work on human stem cells but later sued Geron Corp. to recover some of the previously sold rights. The two sides agreed that Geron Corp. would keep the rights to only three cell types. In 2001, WARF came under public pressure to widen access to human stem-cell technology.

A request for reviewing the WARF patents 5,843,780; 6,200,806; 7,029,913 US Patent and Trademark Office were filed by non-profit patent-watchdogs The Foundation for Taxpayer & Consumer Rights, and the Public Patent Foundation as well as molecular biologist Jeanne Loring of the Burnham Institute. According to them, two of the patents granted to WARF are invalid because they cover a technique published in 1993 for which a patent had already been granted to an Australian researcher. Another part of the challenge states that these techniques, developed by James A. Thomson, are rendered obvious by a 1990 paper and two textbooks. Based on this challenge, patent 7,029,913 has been rejected in 2010. The two remaining hES WARF patents are due to expire in 2015.

The outcome of this legal challenge is particularly relevant to the Geron Corp. as it can only license patents that are upheld.

Key Research Events

  • 1908: The term “stem cell” was proposed for scientific use by the Russian histologist Alexander Maksimov (1874–1928) at congress of hematologic society in Berlin. It postulated existence of haematopoietic stem cells.
  • 1960s: Joseph Altman and Gopal Das present scientific evidence of adult neurogenesis, ongoing stem cell activity in the brain; like André Gernez, their reports contradict Cajal’s “no new neurons” dogma and are largely ignored.
  • 1963: McCulloch and Till illustrate the presence of self-renewing cells in mouse bone marrow.
  • 1968: Bone marrow transplant between two siblings successfully treats SCID.
  • 1978: Haematopoietic stem cells are discovered in human cord blood.
  • 1981: Mouse embryonic stem cells are derived from the inner cell mass by scientists Martin Evans, Matthew Kaufman, and Gail R. Martin. Gail Martin is attributed for coining the term “Embryonic Stem Cell”.
  • 1992: Neural stem cells are cultured in vitro as neurospheres.
  • 1997: Leukemia is shown to originate from a haematopoietic stem cell, the first direct evidence for cancer stem cells.
  • 1998: James Thomson and coworkers derive the first human embryonic stem cell line at the University of Wisconsin–Madison.
  • 1998: John Gearhart (Johns Hopkins University) extracted germ cells from fetal gonadal tissue (primordial germ cells) before developing pluripotent stem cell lines from the original extract.
  • 2000s: Several reports of adult stem cell plasticity are published.
  • 2001: Scientists at Advanced Cell Technology clone first early (four- to six-cell stage) human embryos for the purpose of generating embryonic stem cells.
  • 2003: Dr. Songtao Shi of NIH discovers new source of adult stem cells in children’s primary teeth.
  • 2004–2005: Korean researcher Hwang Woo-Suk claims to have created several human embryonic stem cell lines from unfertilised human oocytes. The lines were later shown to be fabricated.
  • 2005: Researchers at Kingston University in England claim to have discovered a third category of stem cell, dubbed cord-blood-derived embryonic-like stem cells (CBEs), derived from umbilical cord blood. The group claims these cells are able to differentiate into more types of tissue than adult stem cells.
  • 2005: Researchers at UC Irvine’s Reeve-Irvine Research Center are able to partially restore the ability of rats with paralyzed spines to walk through the injection of human neural stem cells.
  • August 2006: Mouse Induced pluripotent stem cells: the journal Cell publishes Kazutoshi Takahashi and Shinya Yamanaka.
  • October 2006: Scientists at Newcastle University in England create the first ever artificial liver cells using umbilical cord blood stem cells.
  • January 2007: Scientists at Wake Forest University led by Dr. Anthony Atala and Harvard University report discovery of a new type of stem cell in amniotic fluid. This may potentially provide an alternative to embryonic stem cells for use in research and therapy.
  • June 2007: Research reported by three different groups shows that normal skin cells can be reprogrammed to an embryonic state in mice. In the same month, scientist Shoukhrat Mitalipov reports the first successful creation of a primate stem cell line through somatic cell nuclear transfer
  • October 2007: Mario Capecchi, Martin Evans, and Oliver Smithies win the 2007 Nobel Prize for Physiology or Medicine for their work on embryonic stem cells from mice using gene targeting strategies producing genetically engineered mice (known asknockout mice) for gene research.
  • November 2007: Human induced pluripotent stem cells: Two similar papers released by their respective journals prior to formal publication: in Cell by Kazutoshi Takahashi and Shinya Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors”, and in Science by Junying Yu, et al., from the research group of James Thomson, “Induced pluripotent stem cell lines derived from human somatic cells”: pluripotent stem cells generated from mature human fibroblasts. It is possible now to produce a stem cell from almost any other human cell instead of using embryos as needed previously, albeit the risk of tumorigenesis due to c-myc and retroviral gene transfer remains to be determined.
  • January 2008: Robert Lanza and colleagues at Advanced Cell Technology and UCSF create the first human embryonic stem cells without destruction of the embryo
  • January 2008: Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts
  • February 2008: Generation of pluripotent stem cells from adult mouse liver and stomach: these iPS cells seem to be more similar to embryonic stem cells than the previously developed iPS cells and not tumorigenic, moreover genes that are required for iPS cells do not need to be inserted into specific sites, which encourages the development of non-viral reprogramming techniques.
  • March 2008-The first published study of successful cartilage regeneration in the human knee using autologous adult mesenchymal stem cells is published by clinicians from Regenerative Sciences
  • October 2008: Sabine Conrad and colleagues at Tübingen, Germany generate pluripotent stem cells from spermatogonial cells of adult human testis by culturing the cells in vitro under leukemia inhibitory factor (LIF) supplementation.
  • 30 October 2008: Embryonic-like stem cells from a single human hair.
  • 1 March 2009: Andras Nagy, Keisuke Kaji, et al. discover a way to produce embryonic-like stem cells from normal adult cells by using a novel “wrapping” procedure to deliver specific genes to adult cells to reprogram them into stem cells without the risks of using a virus to make the change.The use of electroporation is said to allow for the temporary insertion of genes into the cell.
  • 28 May 2009 Kim et al. announced that they had devised a way to manipulate skin cells to create patient specific “induced pluripotent stem cells” (iPS), claiming it to be the ‘ultimate stem cell solution’.
  • 11 October 2010 First trial of embryonic stem cells in humans.
  • 25 October 2010: Ishikawa et al. write in the Journal of Experimental Medicine that research shows that transplanted cells that contain their new host’s nuclear DNA could still be rejected by the invidual’s immune system due to foreign mitochondrial DNA. Tissues made from a person’s stem cells could therefore be rejected, because mitochondrial genomes tend to accumulate mutations.
  • 2011: Israeli scientist Inbar Friedrich Ben-Nun led a team which produced the first stem cells from endangered species, a breakthrough that could save animals in danger of extinction.

See also: Wikipedia

References

External links

Peer-reviewed journals

Related Posts Plugin for WordPress, Blogger...

Comments are closed.